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Existing gradient coil design methods typically require some predetermined surface to be specified upon
which the precise locations of coil windings are optimised with respect to gradient homogeneity and
other measures of coil performance. In contrast, in this paper an analytic inverse method is presented
for the theoretical design of 3D gradient coils in which the precise 3D geometry of the coils is obtained
as part of the optimisation process. This method has been described previously for cylindrical whole-
body gradients and is extended here for open MRI systems. A 3D current density solution is obtained
using Fourier series combined with Tikhonov regularisation. The examples presented involve a minimum
power penalty function and an optional shielding constraint. A discretised set of 3D coil windings is
obtained using an equi-flux streamline seeding method. Results for an unshielded example display a con-
centration of windings within the portion of the coil volume nearest the imaging region and looped
return path windings taken away from this region. However, for a shielded example the coil windings
are found to lie almost exclusively on biplanar surfaces, suggesting that this is the optimum geometry
for a shielded minimum power open coil.

Crown Copyright � 2010 Published by Elsevier Inc. All rights reserved.
1. Introduction

Gradient coils are principle components of magnetic resonance
imaging (MRI) scanners and are used to spatially frequency-encode
the region to be imaged by creating precise linear magnetic fields
in three orthogonal directions (see for example, [1]). High image
quality and short scan time demand strong gradient fields and rap-
idly switched coil currents. As such, primary design criteria include
high gradient homogeneity, high coil efficiency and low coil induc-
tance [2]. However, many secondary concerns impinge upon the
advancement of gradient coil technology, such as eddy current
induction, peripheral nerve stimulation, acoustic noise, and ther-
mal heating (see for example, [3]). Gradient coil design has there-
fore received much attention and development over the last thirty
years in the pursuit of optimizing these design criteria or arriving
at optimum trade-offs for particular applications.

One branch of design methods of considerable note is that com-
prising the many extensions and variations to the target-field
method of Turner [4]. In its original form, field quantities are ex-
pressed in terms of a Fourier-Bessel expansion and a current den-
sity solution is obtained on a cylinder of infinite extent using
Fourier transforms. Constrained minimisation may be included in
the method to obtain gradient coils displaying, for example, mini-
mum power or inductance [2,5]. To obtain finite length coils,
010 Published by Elsevier Inc. All r
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approximate filtering techniques in Fourier space may be used or
the coil length may be constrained explicitly [6]. Alternatively,
finite coil length may be imposed, for example, by representing
the current density using Fourier series [7]. A Fourier series repre-
sentation was combined successfully with Tikhonov regularisation
by Forbes and Crozier [8–10] to solve an ill-posed integral equation
and obtain finite length gradient and shim coils without
approximation.

The analytic design methods discussed thus far tend to be re-
stricted to geometries that display some level of symmetry and tra-
ditionally these are chosen to be either cylinders or parallel plates.
Biplanar gradient coils can be used in open MRI systems, which are
designed to help alleviate patient claustrophobia and to improve
patient access for clinicians [11,12]. Applications of the target field
method and constrained minimisation for this gradient coil struc-
ture are numerous (see for example, [13–15]). Additionally, coils of
finite extent may be obtained by considering, for example, Fourier
series representation for the current density [16–19]. Alternatively,
it is also possible to design both cylindrical and biplanar gradient
coil sets using coil-space optimisation strategies such as simulated
annealing (see for example, [20–22]).

With the advancement in computer processing power, matrix
inversion optimisation techniques combined with boundary ele-
ment method type representations of the current surface have
gained increasing popularity (see for example, [23–26]). The bene-
fit of these methods is that once a suitable mesh has been gener-
ated, they are applicable to surfaces of arbitrary geometry
ights reserved.
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Fig. 1. The model used to describe the open 3D gradient coil: two cylindrical
volumes of radius L, lying coaxially with the z-axis, extending from z = a ? b and
z = �a ? �b, and containing the 3D current densities J1 and J2. There exists a
spherical interior target region (DSV) of radius c, centred at the origin, containing a
desired gradient target field BTz, and two exterior circular shield target regions of
radius Ls, positioned at z = ±d, on which a null field is desired.
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[27,28]. In addition, they enable intricate physical processes, such
as eddy current induction, to be modelled in a relatively straight-
forward, albeit approximate and computationally intensive, man-
ner (see for example, [29]). Analytic design methods nevertheless
continue to be of great value, however, due to the rapid computa-
tion, tractability and physical insight they provide.

The exploration of alternative geometries to cylindrical or bipla-
nar structures for gradient coils has become the subject of much
recent work. Typically, the intention is to obtain coils that either
offer a better coverage of the imaging volume or ameliorate one
of the many secondary concerns in gradient operation listed above.
For example, many novel geometries have been investigated in an
attempt to reduce the very considerable acoustic noise generated
as a result of large Lorentz forces induced within the coil (see for
example, [30,31]), or to reduce the likelihood of peripheral nerve
stimulation (see for example, [32]). Sanchez et al. [33] present an
elegant method involving fuzzy membership functions followed
by optimising adjustments to coil windings in 3D solution space
to obtain dedicated gradient coils for breast imaging. In addition,
many design methods include conical sections that link primary
and shield current surfaces to redistribute return path windings
and improve coil efficiency (see for example, [34–38]).

One feature common to the design methods discussed above is
that some underlying physical structure must be chosen prior to
implementation of the optimisation strategy. In contrast, While
et al. [39] present an analytic 3D gradient coil design method in
which the precise 3D geometry of the coil windings is found as part
of the optimisation process. Fourier series are used to represent a
3D volumetric current density within a cylindrical volume sur-
rounding the region of interest and an ill-conditioned integral
equation related to minimum field error is solved using Tikhonov
regularisation and a minimum power constraint. Discrete coil
windings are obtained using an equi-flux streamline seeding meth-
od and are found to display an interesting spiral-type form wound
on torus surfaces of elliptical cross-section. Subsequently, these
results guided the design of self-shielding toroidal transverse gra-
dient coils by While et al. [40], which display high gradient homo-
geneity, low inductance, high efficiency and good force balancing.

In the present paper, the 3D design method of While et al. [39]
is extended to the design of 3D gradient coils for open MRI sys-
tems. Two cylindrical volumes either side of the imaging region
are considered in this work and appropriate volumetric current
density components are selected in terms of Fourier series. These
are presented in the following section along with the correspond-
ing field expressions of interest. In Section 3, a regularisation
strategy is described for obtaining the Fourier coefficients corre-
sponding to weighted minimum field error, minimum power and
shielding constraints. A method for obtaining discrete coil wind-
ings from the volumetric current density is summarised in Sec-
tion 4 along with a secondary optimisation for the coil currents.
In Section 5, results are given for a variety of design considerations,
and some concluding remarks are given in Section 6.
2. Model geometry and three-dimensional current density

In this section, the 3D volumetric current density representa-
tion for the open system gradient coils will be described and the
corresponding expression for the induced magnetic field vector
will be derived. Physical constraints on the available 3D solution
space obviously include the presence of the patient imaging vol-
ume, the primary magnet and associated structures, and the
requirement for the final coil set to satisfy an open configuration.
To this end, two cylindrical volumes are considered of radius L, ly-
ing coaxially with the z-axis and extending from z = a to z = b and
from z = �a to z = �b, as depicted in Fig. 1. The upper volume car-
ries an unknown current density vector J1(r
0
, h

0
, z
0
) and the lower

volume J2(r
0
, h

0
, z
0
) (A/m2). We intend to solve for these current den-

sities such that they induce a linear magnetic field on a spherical
target region of radius c, centred at the origin, called the diameter
spherical volume (DSV). In addition, active shielding may be in-
cluded in the model by also minimising the induced field on exte-
rior circular target regions of radius Ls, centred at z = ±d (see Fig. 1).

In the present work we intend to solve for a transverse x-gradi-
ent coil, and hence as a result of the symmetry of the arrangement
in Fig. 1 we may immediately put:

J2ðr0; h0; z0Þ ¼ J1ðr0; h0;�z0Þ: ð1Þ

Note that for the case of a z-gradient coil we would instead have
J2(r

0
, h

0
, z
0
) = �J1(r

0
, h

0
, �z

0
). Fourier series are used to represent the

current density components, which are chosen to be 2p-periodic
in coordinate h

0
, 2L-periodic in r

0
and 2(b � a)-periodic in z

0
, for gen-

erality. Boundary constraints on the current density components
demand that J1r(L, h

0
, z
0
) = 0, J1z(r

0
, h

0
, a) = J1z(r

0
, h

0
, b) = 0 and

J1(0, h
0
, z
0
) = 0. In addition, the three components must satisfy the

time independent continuity equation:

r � J1 ¼ 0: ð2Þ

Appropriate current density components were therefore chosen as
follows:

J1rðr0;h0;z0Þ ¼
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k¼1
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L
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and J1h(r
0
, h

0
, z
0
) can be obtained by enforcing Eq. (2):

J1hðr0; h0; z0Þ ¼ �
Z

J1r þ r0
@J1r

@r0
þ r0

@J1z

@z0

� �
dh0: ð5Þ

The resultant expression for J1h is lengthy and is not shown here in
interests of space. Note that we have introduced the unknown Fou-
rier coefficients Amn0, Bmn0, Fm0k, Gm0k, Amnk, Bmnk, Cmnk, Dmnk, Fmnk,
Gmnk, Pmnk and Qmnk (m = 1:M, n = 1:N, k = 1:K), to be solved for later.
For generality, the radial component (3) above includes n = 0 modes
independent of the z

0
-coordinate and the axial component (4)

includes k = 0 modes. Note that Bessel functions could be used to
govern the radial dependence of the current density components
(3)–(5); however, trigonometric functions have been chosen for
convenience since these functions and their derivatives belong to
an orthogonal set.

The magnetic induction vector B(r) at the field point r due to
current density J(r

0
) at source points r

0
(within volume V

0
), can be

calculated using the Biot–Savart law [41, p. 178]. In gradient coil
operation it is the axial component of this magnetic induction vec-
tor that is important, and for the present problem this is given as
follows in terms of cylindrical coordinates:

Bzðr; h; zÞ ¼ �
l0

4p

Z b

a

Z 2p

0

Z L

0
h r sinðh0 � hÞJ1r½

�ðr0 � r cosðh0 � hÞÞJ1h�r0 dr0 dh0 dz0; ð6Þ

where

h ¼ 1
R3
�
þ 1

R3
þ
; ð7Þ

and

R� ¼ r02 þ r2 � 2r0r cosðh0 � hÞ þ ðz0 � zÞ2
h i1=2

: ð8Þ

Note that since an x-gradient coil is being considered in this work,
the symmetry argument leading to Eq. (1) has also been applied
to give Eq. (6) in terms of the current density for the upper volume,
J1(r

0
, h

0
, z
0
), alone. To consider a z-gradient coil, the second term in

the expression for h in (7) would have to be subtracted from the
first term rather than added; however, different Fourier series for
the current density components in Eqs. (3)–(5) would also have to
be considered in this case to allow m = 0 modes that did not involve
the coordinate angle h

0
.

Substituting Eq. (3) and the corresponding expression for
J1h(r

0
, h

0
, z
0
) from Eq. (5) into Eq. (6) and performing the change of

variables (b = h
0 � h) and some trigonometric manipulation, we ar-

rive at the following Fourier series expression for the axial compo-
nent of the magnetic induction vector:

Bzðr; h; zÞ ¼ l0
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þ l0

XN

n¼1
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Here we have introduced the following intermediate functions, for
convenience:
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Tmnkðr; zÞ ¼ �
1
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Z b

a

Z p

0

Z L
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h
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ðb� aÞ r
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and the function h was given previously by Eq. (7).

3. Regularisation solution process for the Fourier coefficients

The aim is to solve for the Fourier coefficients of the current
density components J1r, J1h and J1z, such that the axial component
of the magnetic induction vector closely matches some desired tar-
get field on the surface of the spherical target region called the
diameter spherical volume (DSV in Fig. 1). This makes Eq. (6) a
Fredholm integral equation of the first kind (see for example, [42,
p. 299]), and a regularisation strategy will be described in this sec-
tion for solving this highly ill-conditioned problem.

Tikhonov regularisation was first utilized in gradient coil design
by Forbes and Crozier [8]. In this method, a residual error C is min-
imised with respect to the current density coefficients. For the
present problem we choose a residual error of the form:

C ¼ Uþ kSUS þ kPP: ð14Þ

Here the function U represents the field error between the induced
field Bz (9) and the target field BTz over the surface of the DSV:

U ¼ c
Z c

�c

Z p

�p
f½Bzðrc; h; zÞ � BTz�2gdh dz; ð15Þ

where rc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � z2
p

. The function US in Eq. (14) represents a mea-
sure of the total magnetic flux over the surface of the exterior circu-
lar shield target regions (see Fig. 1):

US ¼
Z p

�p

Z LS

0
B2

z ðr; h; dÞ þ B2
z ðr; h;�dÞ

h i
r dr dh; ð16Þ

with the corresponding weight kS for this shielding constraint. The
last term in the expression for C (14) involves the regularising
parameter kP multiplied by some penalty function P, which serves
to improve the conditioning of the problem.
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The choice of penalty function P depends largely on the design
criteria for the particular problem. Since a complex 3D current
density vector is being considered in the present paper, we choose
a penalty function that represents minimum total coil power, for
simplicity:

P ¼
Z b

a

Z p

�p

Z L

0
J2

1r þ J2
1h þ J2

1z

h i
r0 dr0 dh0 dz0: ð17Þ

Note that Eq. (17) could be replaced with a penalty function repre-
senting minimum inductance, coil winding curvature, or any other
feature of the coil that is quadratic with respect to the current den-
sity. However, power is a common choice of constraint for gradient
coil design in the pursuit of highly efficient coils and serves well
here in demonstrating the overall 3D design philosophy.

Substituting Eqs. (3)–(5) and (9) appropriately into U in (15), US

in (16) and P in (17), and differentiating the expression for C in
(14) with respect to the unknown current density Fourier coeffi-
cients leads to a set of linear equations in terms of these Fourier
coefficients. For example, substituting Eq. (9) into Eq. (15) and dif-
ferentiating with respect to Fuvw gives the following minimum field
error condition for this coefficient:

@U
@Fuvw

¼ 2pcl2
0

XK

k¼1

Fu0k

Z c

�c
Uu0kðrc; zÞUuvwðrc; zÞdz
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n¼1
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0

XN

n¼1

XK

k¼1
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Z c
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Uunkðrc; zÞUuvwðrc; zÞdz

�

þ Punk

Z c

�c
Vunkðrc; zÞUuvwðrc; zÞdz

þ Aunk

Z c

�c
Sunkðrc; zÞUuvwðrc; zÞdz

þCunk

Z c

�c
Tunkðrc; zÞUuvwðrc; zÞdz

�

� 2cl0

Z c

�c

Z p

�p
BTzðrc; h; zÞUuvwðrc; zÞ sin uhdhdz: ð18Þ

Similar conditions exist for the remaining coefficients, and the same
process is applied to Eqs. (16) and (17) to obtain shielding and min-
imum power conditions for each coefficient, but these are not
shown here in interests of space. The integrals in the resulting
expressions, such as Eq. (18), may be evaluated numerically. In this
work, the trapezoidal rule was used to evaluate integrals with re-
spect to b and h

0
, and Legendre–Gauss quadrature was used to eval-

uate integrals with respect to r, z, r
0

and z
0

[43].
The complete system of linear equations defining the coefficient

conditions arising from minimising the residual error C in Eq. (14)
can be expressed in the following matrix equation form:

ðAþ kSAS þ kPPÞX ¼ T: ð19Þ

Here matrix A (square) and vector T contain the minimum field er-
ror conditions arising from Eq. (15), such as Eq. (18), matrix AS con-
tains the shielding conditions arising from Eq. (16), matrix P
contains the minimum power conditions arising from Eq. (17),
and the unknown current density coefficients are stored in the vec-
tor X (of length 2MN + 2MK + 8MNK). Altering the weight kS changes
the level of shielding in the corresponding solution. Increasing the
value of the regularising parameter kP decreases coil power and also
improves the conditioning of the matrix Eq. (19) at the expense of
an accurate match between the induced field and the target field.
Solving Eq. (19) yields the Fourier coefficients, which can be used
in Eqs. (3)–(5) for calculating the 3D current density, and Eqs. (6)
or (9) for calculating the axial component of the corresponding
magnetic induction vector.

4. Obtaining 3D coil windings and calculating coil performance

Once a 3D current density solution has been obtained by solving
Eq. (19), this must be discretised in some way to create corre-
sponding 3D gradient coil windings. In this section, an approxi-
mate equi-flux streamline seeding technique will be presented
for this purpose, along with the means for calculating the coil cur-
rent and measures of coil performance.

In more conventional gradient coil design, in which a 2D current
density (A/m) solution is obtained on some predetermined coil sur-
face, a streamfunction exists which relates the two components of
current density as a consequence of satisfying the zero divergence
condition (2). Precise coil winding locations can be obtained by
contouring this associated streamfunction for the 2D problem
[44]. However, for the present case of a 3D current density, a single
streamfunction is not available and we instead look to plot stream-
lines to find the locations of the coil windings for the 3D gradient
coil. The problem therefore lies in choosing appropriate points at
which to seed the streamlines such that they represent equal incre-
ment of current and, collectively, best approximate the 3D current
density.

Many streamline seeding techniques exist for visualising 2D and
3D vector fields using evenly spaced or feature based streamlines.
One method is presented by Schlemmer et al. [45] in which the den-
sity of the streamlines can be controlled by any feature of the vector
field or indeed be user-defined. This method, dubbed ‘‘priority
streamlines” by those authors, was adapted by While et al. [39] for
calculating 3D gradient coil windings for a cylindrical whole-body
scanner. More recently, this equi-flux streamline seeding method
has been improved further as described in the tutorial article by
While and Forbes [46] and applied successfully to a range of 1D,
2D and 3D problems by those authors. Here this method will be out-
lined briefly and applied to the present 3D gradient coil problem.

A scalar function D(r
0
, h

0
, z
0
) called the density map is created and

chosen to be equal to the current density magnitude at all points
within the coil volume:

Dðr0; h0; z0Þ ¼ J2
1r þ J2

1h þ J2
1z

	 
1=2
; ð20Þ

into which Eqs. (3) and (4) and the corresponding expression for
J1h(r

0
, h

0
, z
0
) from Eq. (5) are substituted. The seeding point for the

first streamline is chosen to correspond to the location of the max-
imum of this density map. This streamline is then integrated and in
the present paper the inbuilt functions of the program MATLAB

TM

have been used for this purpose. In cylindrical coordinates the
streamline equations are as follows:

dr
J1r
¼ rdh

J1h

¼ dz
J1z
: ð21Þ

In addition, since the current density is divergence free (2), all
streamlines must be closed and a check is included in the tracking
algorithm to truncate the streamline once it has returned to within
some small distance from the seed point (see [46]).

Once a streamline has been obtained, a 3D Gaussian filter is ap-
plied to the density map along the trace of the streamline. That is,
the density map is lowered on and about the streamline, by sub-
tracting a set of 3D Gaussian functions centred on the vertices of
the streamline. Note that care must be taken to use only equi-dis-
tant streamline vertices to ensure an even filter and a simple min-
imum distance check stepping algorithm can be included for this
purpose (see [46]). In terms of Cartesian coordinates, the Gaussian
filter is of the form:



(a)

(b)

(c)

Fig. 2. Quiver plots of J1(r
0
, h

0
, z
0
) for the unshielded system, on: (a) the (x, y) plane at

constant z = a = 0.25 m; (b) the (rh, z) plane at constant r = L = 0.5 m; (c) the (r, z)
plane at constant h = p/2 (scaled up by a factor of 4).
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f ðx; y; zÞ ¼ A
XT

t¼1

exp � x� xt

r

	 
2
þ y� yt

r

	 
2
þ z� zt

r

	 
2
� �� �

:

ð22Þ

Here, the points (xt, yt, zt) (t = 1:T) represent the reduced set of equi-
distant streamline vertices, (x, y, z) represents all points in the 3D
volume, and the sum over t is normalized for each streamline.
The amplitude A of the Gaussian filter for the entire streamline is
chosen to be equal to the current maximum of the density map.
The variance r is scaled appropriately by the current maximum of
the density map such that the volume integral of the filter is con-
stant for each streamline. To this end, it can be shown that for a
3D Gaussian function the variance must scale by the inverse
cube-root of the amplitude (see [46]).

Applying the Gaussian filter (22) to the density map (20) pro-
duces an updated density map and the next streamline is seeded
at the location corresponding to the maximum of this new density
map. The entire process is repeated continuously, whereby the
density map is successively lowered with each additional stream-
line, until the maximum of the updated density map falls below
some threshold. For 3D vector fields, an appropriate threshold
was found by While and Forbes [46] to be 1=

ffiffiffi
3
p

e times the original
density map maximum and this was chosen for the present prob-
lem too. Streamline density and the total number of streamlines
seeded can be controlled therefore by careful choice of the initial
variance for the first streamline, and the variance for subsequent
streamlines is scaled by the amplitude as described above. Clearly
the final set of 3D coil windings obtained in this manner represent
the 3D current density only approximately. Nevertheless, accurate
solutions have been obtained for simple 1D, 2D and 3D examples
using this equi-flux streamline seeding method, and the reader is
directed to While and Forbes [46] for further details.

Once the coil windings have been obtained, it is important to
calculate appropriate coil currents for each coil set, such that the
efficiency, magnetic field and gradient homogeneity can be calcu-
lated, in addition to the coil inductance. Due to the approximate
nature of the equi-flux streamline seeding method (as opposed to
the exact nature of contouring a streamfunction on a 2D surface),
these values are not expected to be superior to existing open gra-
dient designs necessarily, and instead the aim of the work is to gain
general insight into possible useful geometries for further optimi-
sation. Nevertheless, these parameters are calculated to provide
some benchmark values for these 3D gradient coil structures.

For two sets of W coil windings, symmetric about z = 0, carrying

current Iw (w = 1:W) and containing vertices x0wq; y0wq; z0wq

	 

(q = 1:Qw), the axial component of the magnetic induction vector
is given by:

Bzðx; y; zÞ ¼
l0

4p
XW
w¼1

Iw

XQw

q¼1

1
R3
�;wq

þ 1
R3
þ;wq

 !

� x0wq � x
	 


Dy0wq � y0wq � y
	 


Dx0wq

h i
; ð23Þ

where

R�;wq ¼ x0wq � x
	 
2

þ y0wq � y
	 
2

þ z0wq � z
	 
2

� �1=2

; ð24Þ

and

Dx0wq ¼ x0w;qþ1 � x0wq

	 

Dy0wq ¼ y0w;qþ1 � y0wq

	 

:

ð25Þ

Ideally, the coil currents for all the windings should be the same (i.e.
Iw = I " w = 1:W). To this end, the optimum fixed current I can be
obtained by putting Iw = I in Eq. (23), substituting this into Eq.
(15) and minimising with respect to I. This results in the following
expression for I after some suitable changes of variables (to avoid
potential numerical error caused by a vanishing denominator):

I ¼ 4p
l0

R c
�c

R p=2
�p=2 BTzFðh; xÞdhdxR c

�c

R p=2
�p=2 Fðh; xÞ½ �2dhdx

; ð26Þ
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where

Fðh; xÞ ¼
XW
w¼1

XQw

q¼1

1
R3
�;wq

þ 1
R3
þ;wq

 !

� x0wq � x
	 


Dy0wq � y0wq �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � x2
p

sin h
	 


Dx0wq

h i
: ð27Þ

However, to account for the approximate nature of the equi-flux
streamline seeding method and the correspondingly approximate
positions of the windings, it may be necessary to allow some vari-
ability in current across the coil winding set in the pursuit of ade-
quate gradient homogeneity. This can be achieved by substituting
Eq. (23) into Eq. (15) and minimising with respect to Iw. This yields
a set of W linear equations for the coil currents Iw. However, to
obtain realistic current magnitudes, these equations must be
constrained and an appropriate choice of constraint is to simulta-
neously minimise the sum of squares of the differences between
the individual coil currents and the optimum fixed coil current
(26). The full set of coil currents can be obtained by solving a matrix
equation of the form:

ðDþ kI IdÞIw ¼ ðGþ kIIf Þ: ð28Þ

Here matrix D (square) and vector G (of length W) contain mini-
mum field error conditions resulting from minimising Eq. (15) for
the discrete case (23), matrix Id is the identity matrix, vector If

has elements equal to the optimum fixed current value (26) and
the vector Iw contains the variable coil currents. Increasing the
weighting kI increases the spread of current values from the opti-
mum fixed current I (26). The solution of Eq. (28) for Iw can be used
in Eq. (23) to calculate the axial component of the magnetic induc-
tion vector. Expressions for the corresponding gradient homogene-
ity d (field error =

ffiffiffi
d
p
� 100%), coil efficiency and inductance for a

discrete set of windings can be found in While et al. [39], but have
not been shown here in interests of space.

5. Results

In this section, 3D current density solutions for both unshielded
and shielded open gradient coil sets will be presented. In addition,
the corresponding 3D coil windings derived from these current
densities will be displayed and discussed in terms of their general
geometry and coil performance. For the open system depicted in
Fig. 1, the coil volume dimensions were chosen appropriately for
a whole-body arrangement with cylinder radius L = 0.5 m, and z-
limits a = 0.25 m and b = 0.35 m. The interior target region (DSV)
was chosen to be a sphere of radius c = 0.18 m centred at the origin.
Fig. 3. 32 Coil windings used to approximate the 3D current density J1(r
0
, h

0
, z
0
) for the un
An x-gradient with gradient strength 50 mT/m was considered,
such that BTz = 50 � 10�3rc cos h in Eq. (15). The outer circular
shield target regions were chosen to have radius Ls = 0.55 m and
be positioned with d = 0.4 m (see Fig. 1).

The program MATLAB
TM was used for all instances of numerical

computation. For the series expansions of the current density com-
ponents (3)–(5), Fourier modes were taken to M = 1 and N = K = 11
terms, since for an x-gradient field, only the m = 1 mode in the Fou-
rier series for the h

0
-coordinate is necessary. Numerical integration

was performed over 20 intervals to ensure convergence. The great-
est computation time was associated with constructing matrix A in
Eq. (19) and this took approximately 34 min on a 2 GHz Intel Core2
CPU with 2 GB of RAM.

Firstly, results for an unshielded x-gradient system will be pre-
sented. That is, the shielding weight kS in Eq. (19) was set to zero
for this purpose. Several different values for the regularising
parameter kP were trialled and results will be displayed for the case
where kP = 10�20. This value led to an appropriate balance between
achieving a well conditioned matrix Eq. (19) and obtaining an in-
duced gradient field of high accuracy. Increasing kP does improve
conditioning further and results in smoother coil winding patterns
and lower coil currents, however this is at the expense of field
accuracy. Once the matrix Eq. (19) was solved for vector X, the
3D current density could be computed using Eqs. (3)–(5) and the
axial component of the magnetic induction vector using Eqs. (6)
or (9).

Fig. 2 displays 2D quiver plots of the unshielded 3D current den-
sity J1(r

0
, h

0
, z
0
) for particular cross-sections in z, r and h. In Fig. 2a,

the quiver plot is on the (x, y) plane at constant z = 0.25 m, which
is the inner surface of the upper volume. In this plane, the current
density displays a symmetric crescent-shaped form which is simi-
lar to the current flow on the primary surfaces of traditional bipla-
nar gradient coils (see for example, [37,38]). This crescent-shaped
flow is also found at other cross-sections of constant z except that
the magnitude of the current density drops as z:a ? b (particularly
at small r).

Fig. 2b displays a quiver plot on the (rh, z) plane at constant
r = 0.5 m, which is on the outer cylindrical surface of the upper vol-
ume. Note that the apparent sources and sinks of current density in
this plane represent the flow of current from and to other regions
of the coil volume. Similar general flow is observed at other cross-
sections of constant r. Fig. 2c displays a quiver plot on the (r, z)
plane at constant h = p/2, in which the magnitude has been scaled
up by a factor of 4. Once again, similar flow is found for other cross-
sections of constant h, except with different magnitude or flow
direction. The planes in Fig. 2b and c are interesting as they are
shielded system (see Fig. 2), created using the equi-flux streamline seeding method.



(a)

(b)

(c)

Fig. 4. Quiver plots of J1(r
0
, h

0
, z
0
) for the shielded system, on: (a) the (x, y) plane at

constant z = a = 0.25 m; (b) the (rh, z) plane at constant r = L = 0.5 m; (c) the (r, z)
plane at constant h = p/2 (scaled up by a factor of 4).
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not available in traditional biplanar gradient coil designs, in which
the current is constrained to lie on planar surfaces at constant z.

The induced magnetic field corresponding to the 3D current
density shown in Fig. 2 is found to display excellent gradient
homogeneity with a field error of

ffiffiffi
d
p
¼ 0:15% within the DSV of ra-

dius c = 0.18 m (or
ffiffiffi
d
p
¼ 0:04% with c = 0.15 m). However, it is crit-

ically important to examine the discretised system of coil windings
so that other measures of coil performance such as coil efficiency
and inductance may be calculated. This can be achieved by apply-
ing the equi-flux streamline seeding method described briefly in
Section 4 (see also, [46]). As outlined in that section, the number
of coil windings can be controlled through careful choice of the ini-
tial variance for the Gaussian filter. For example, initial variances of
0.06, 0.02 and 0.01, correspond to 10, 32 and 80 coil windings,
respectively, being obtained in the upper volume.

Fig. 3 displays 32 coil windings obtained using the equi-flux
streamline seeding method to approximate the unshielded 3D cur-
rent density of Fig. 2. Here we note that there is a concentration of
coil windings on and near the inner surface at z = a = 0.25 m. Addi-
tional windings either have a similar form but shifted to a higher z-
value, or have a portion of the winding near x = 0 m and z = 0.25 m
with the return path taken far away and closer to the boundary
r = L = 0.5 m and z = b = 0.35 m. This general result is perhaps ex-
pected to be optimum for a minimum power coil since it places
important windings or portions of windings near the DSV and less
important, or nuisance, return paths far away from this region.

Clearly the coil winding result displayed in Fig. 3 is highly com-
plex and it is not the intention of this work that such a configura-
tion would be physically built. Rather, these results are intended to
be used to guide further optimisation on simpler coil surfaces, in a
similar fashion to the toroidal coils [40] related to the original
cylindrical 3D gradient coil work [39]. For example, for the mini-
mum power case displayed in Fig. 3, an appropriate arrangement
might be a flat plate on z = a combined with a set of wedge or
V-shaped plates of different angles and positions (aligned with
y-axis) that take windings to higher z-values. However, it is impor-
tant to stress that an entirely different 3D geometry may be
suggested if the present method was reworked with a constraint
other than coil power.

Nevertheless, we may calculate coil performance measures for
the 3D coil windings as described in Section 4. For 62 coil windings
the fixed current (26) is calculated to be I = 426 A, such that the
efficiency is 117 lT/A/m. The coil inductance is found to be
585 lH for this example, such that g2/L = 23.6 lT/A/m4. Increasing
the number of coil windings to 80 results in lower fixed current
I = 378 A, higher efficiency 132 lT/A/m and higher inductance
901 lH (g2/L = 19.4 lT/A/m4). However, field error is found to be
rather poor with

ffiffiffi
d
p
¼ 5:42% within a DSV of radius c = 0.15 m

(or
ffiffiffi
d
p
¼ 9:49% with c = 0.18 m). The likely cause for this, as men-

tioned in Section 4, is that the equi-flux streamline seeding method
only gives the approximate locations for the coil windings, which
will adversely affect field quality. To account for this approxima-
tion we may allow the individual coil currents to vary slightly,
by solving the matrix Eq. (28) for a particular choice of the param-
eter kI. For example, for the case of 80 coil windings, allowing the
coil currents to vary by ±8% reduces the field error to

ffiffiffi
d
p
¼ 3:91%

within a DSV of radius c = 0.15 m (or
ffiffiffi
d
p
¼ 7:17% with c = 0.18 m).

A greater variance of ±25% reduces this error further to
ffiffiffi
d
p
¼ 1:67%

with c = 0.15 m (or
ffiffiffi
d
p
¼ 3:31% with c = 0.18 m). This suggests that

with more precise optimisation of this unshielded result, coil
windings with high gradient homogeneity and good coil perfor-
mance can be obtained.

While the results for the unshielded open 3D gradient coil in
Fig. 3 are interesting, in practice it is necessary to include some level
of shielding into the system. This can be achieved in the present
method by selecting appropriately some finite value for the shield
weighting kS in the matrix Eq. (19). Fig. 4 displays 2D quiver plots
of the shielded 3D current density J1(r

0
, h

0
, z
0
), with kS = 10�4, for par-

ticular cross-sections in z, r and h. In Fig. 4a, the quiver plot is on the
(x, y) plane at constant z = 0.25 m, and the current density displays
a symmetric crescent-shaped form similar to that for the
unshielded result of Fig. 2a except with greater magnitude. This



Fig. 5. 42 coil windings used to approximate the 3D current density J1(r
0
, h

0
, z
0
) for the shielded system (see Fig. 4), created using the equi-flux streamline seeding method.

Fig. 6. 96 coil windings used to approximate the 3D current density J1(r
0
, h

0
, z
0
) for the shielded system (see Fig. 4), created using the equi-flux streamline seeding method.
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crescent-shaped flow is also found at other cross-sections of con-
stant z except that the sense of the flow reverses as z:a ? b.

The reversal of current direction from z:a ? b is expected for the
case of active shielding as the field generated by the current near
z = b cancels the field generated by the current near z = a on the
exterior circular shield target regions. As a consequence, the current
density near z = a must be greater in magnitude for the shielded
system compared to the unshielded system, to maintain a satisfac-
tory gradient field within the DSV, as found in Fig. 4a. The reversal
of current direction is also observed in Fig. 4b, which displays a qui-
ver plot of the shielded 3D current density on the (rh, z) plane at
constant r = 0.5 m, and can be compared to the unshielded equiva-
lent in Fig. 2b. For completeness, Fig. 4c displays a quiver plot on the
(r, z) plane at constant h = p/2, in which the magnitude has again
been scaled up by a factor of 4. Note that the shielded 3D current
density of Fig. 4 induces a gradient field with slightly higher field
error to the unshielded system, with

ffiffiffi
d
p
¼ 0:22% within a DSV of

radius c = 0.18 m (or
ffiffiffi
d
p
¼ 0:08% with c = 0.15 m). However, the

maximum magnetic field value on the outer circular shield target
region is reduced heavily by a factor of 11.

Once again, approximate coil winding locations can be obtained
by applying the equi-flux streamline seeding method. Fig. 5 dis-
plays the 42 coil windings obtained for the shielded 3D current
density of Fig. 4 when the initial variance for the Gaussian filter
was set to 0.02. This result is remarkable and fascinating since de-
spite having the extra degree of freedom to place windings within
the coil volume, all 42 coil windings are placed exclusively on
either the inner (z = a = 0.25 m) or outer (z = b = 0.35 m) coil sur-
faces. That is, the result almost identically matches that of a tradi-
tional biplanar x-gradient coil design (see for example, [37,38]).
This suggests that for a minimum power coil, the standard biplanar
configuration is already optimum with regards to overall coil
geometry. Once again, this is perhaps expected since to minimise
coil power it is necessary to place two sets of coil windings as close
to both the DSV and shield target regions as possible.

Increasing the number of coil windings further results in some
windings being placed within the coil volume. For example, Fig. 6
shows 96 coil windings obtained using the equi-flux streamline
seeding method with initial variance equal to 0.01, for the shielded
3D current density of Fig. 4. These additional windings are interest-
ing since they are self-shielding in their form. That is, they are gen-
erally aligned with the y-axis and loop from a low z-value, where
they are used to induce a linear field within the DSV, to a higher
z-value, where they are used to cancel the field on the shield target
regions. Indeed this general form can be extended to the windings
on the inner and outer surfaces. That is, to remove the difficulty of
overlaying windings at r = L = 0.5 for both surfaces, these windings
could be connected instead from z = a to z = b in a similar self-
shielded arrangement. This configuration has previously been re-
ported in several existing biplanar designs (see for example,
[28,37,38]) and hence the present 3D result gives further credence
to these established gradient coils for open systems.
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As done so for the unshielded system, we may estimate field
homogeneity and coil performance measures for the shielded 3D
gradient coil solutions. For 70 coil windings the fixed current
(26) is calculated to be I = 924 A, such that the efficiency is
54 lT/A/m. The coil inductance is found to be 704 lH for this
example, such that g2/L = 4.2 lT/A/m4. Increasing the number of
coil windings to 96 (see Fig. 6) results in lower fixed current
I = 587 A, higher efficiency 85 lT/A/m and higher inductance
1569 lH (g2/L = 4.6 lT/A/m4). The field error for these examples
is reasonable for a fixed current value and

ffiffiffi
d
p

< 5% within a DSV
of radius c = 0.18 m and

ffiffiffi
d
p

< 2:5% within a DSV of radius
c = 0.15 m. That is, for the shielded case, accounting for the approx-
imate nature of the equi-flux streamline seeding method by allow-
ing variation in the coil current values (by solving Eq. (28)) was
unnecessary in obtaining a linear gradient field. In addition, these
coil parameter estimates compare favourably with existing bipla-
nar coil designs (see for example, [37]), despite the primary aim
of the present work being to investigate optimum geometries for
open system gradient coils for further precise coil winding
optimisation.
6. Conclusion

A theoretical design method has been presented for obtaining
3D gradient coils for an open MRI system. A Tikhonov regularisa-
tion scheme was used to solve for the Fourier coefficients of a 3D
current density vector in two cylindrical volumes either side of
the imaging region. The method incorporated a minimum power
constraint and allowed the inclusion of active shielding into the
system. The corresponding discretised system of 3D coil windings
was obtained approximately using an equi-flux streamline seeding
method.

For the unshielded case, the coil windings were found to be con-
centrated on the inner surfaces of the coil volumes and displayed
an interesting looped structure that took unwanted return path
portions far away from the DSV. However, for the shielded case,
the coil windings were found to lie almost exclusively on the inner
and outer surfaces of the coil volumes in the arrangement of a tra-
ditional biplanar design, with additional windings displaying an
inherent self-shielding property in line with recent gradient coil
designs. This result suggests that existing biplanar designs are al-
ready optimum for open systems, at least with regards to minimis-
ing coil power.

The 3D design method can be adapted in a straightforward
manner to consider other types of coil volumes as has been done
so previously for cylindrical whole-body systems. In addition, con-
straints other than coil power may be incorporated easily into the
design method to investigate alternative optimum 3D geometries.
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